

Daily Tutorial Sheet-2

JEE Advanced (Archive)

16. (i) 0.556 (ii) 0.0099

214.2 gm solution has 34.2 gm sugar (sugar is sucrose, $C_{12}H_{22}O_{11}$)

$$180 \text{ gm H}_2\text{O has} \frac{34.2}{342} = 0.1 \text{ mole sugar}$$

1000 gm H_2O would have = $0.1 \times \frac{1000}{180}$ mole sugar $\Rightarrow 0.556$ molal

$$\chi_{sugar} = \frac{n_{sugar}}{n_{sugar} + n_{H_2O}} = \frac{0.1}{0.1 + \frac{180}{18}} = \frac{0.1}{10.1} = 0.0099$$

17.(10.42)

Given: $93\% H_2SO_4$ solution (w/v)

93g H_2SO_4 is present in $\rightarrow 100$ ml of solution

 $100 \text{ ml solution} \Rightarrow 184 \text{ gm solution (d = 1.84 gm/cc)}$

$$\therefore 184 - 93 = 91 \text{ gm solvent has } 93 \text{ gm } \text{H}_2\text{SO}_4 = \frac{93}{98} \text{ moles H}_2\text{SO}_4$$

Hence, 1000 gm solvent has $=\frac{93}{98} \times \frac{1000}{91} = 10.42 \text{ molal}$

18. $Pb(NO_3)_2 = 3.3g$, $NaNO_3 = 1.7g$

Heating below 600°C converts $Pb(NO_3)_2$ into PbO and $NaNO_3$ into $NaNO_2$ as

MW:
$$Pb(NO_3)_2 \xrightarrow{\Delta} PbO(s) + 2NO_2 \uparrow + \frac{1}{2}O_2 \uparrow$$

$$\underset{\text{MW:}}{\text{NaNO}_3} \xrightarrow{\Delta} \underset{69}{\text{NaNO}_2(s)} + \frac{1}{2} \underset{O_2}{\text{O}_2} \uparrow$$

Weight loss =
$$5 \times \frac{28}{100} = 1.4 \text{ g}$$
 \Rightarrow Weight of residue left = $5 - 1.4 = 3.6 \text{ g}$

Now, 330g $\mathrm{Pb(NO_3)}_2$ gives 222 g PbO

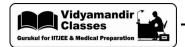
$$\therefore \qquad \text{x g Pb(NO}_3)_2 \text{ will give } \frac{222x}{330} \text{g PbO}$$

Similarly, 85 g $NaNO_3$ gives 69 g $NaNO_2$

$$\Rightarrow$$
 $(5-x)g \text{ NaNO}_3 \text{ will give } \frac{69(5-x)}{85}g \text{ NaNO}_2$

$$\Rightarrow \qquad \text{Residue}: \ \frac{222x}{330} + \frac{69(5-x)}{85} = 3.6 \, g$$

Solving for x gives, $x = 3.3 \text{ g Pb(NO}_3)_2 \Rightarrow \text{NaNO}_3 = 1.7 \text{ g}.$


19.(4.14 g) Molar mass of $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$

$$=63.5+32+4\times16+5\times18=249.5g$$

Also, molar mass represents mass of Avogadro number of molecules in gram unit, therefore

$$\because 6.023 \times 10^{23} \text{ molecules of } \text{CuSO}_4 \cdot 5\text{H}_2\text{O} \text{ weight } 249.5 \text{ g}$$

$$\therefore$$
 10²² molecules will weight $\frac{249.5}{6.023 \times 10^{23}} \times 10^{22} = 4.14g$

20. (i) **0.25M** (ii) **0.251m** (iii) $\chi_{Na_2SO_4} = 0.0045$

Glauber's salt \rightarrow Na₂SO₄·10H₂O (M. W. = 322 gm/mol)

Moles of Glauber's salt dissolved = $\frac{80.575}{322}$ mole = 0.25 mole

$$V_{soln}$$
 = 1 dm³ = 1 ℓ \Rightarrow Molarity = 0.25 M

Mass of 1ℓ solution = $1000 \times 1.0772 \text{ gm/cc} = 1077.2 \text{ gm}$

Mass of solvent in 1ℓ solution = 1077.2 - 80.575 = 996.625 gm

: 996.625 gm solvent has 0.25 mole solute

Hence, 1000 gm solvent has = $0.25 \times \frac{1000}{996.625} = 0.251$ molal

$$\chi_{\text{Na}_2\text{SO}_4} = \frac{n_{\text{Na}_2\text{SO}_4}}{n_{\text{Na}_2\text{SO}_4} + n_{\text{H}_2\text{O}}} = \frac{0.25}{0.25 + \frac{996.625}{18}} = 0.0045$$

21.(70.68 × 10⁶ g)

Specific Volume =
$$\frac{\text{Volume}}{\text{Mass}} = 0.75 \text{ cm}^3 / \text{gm}$$

$$V = \pi r^2 h$$

$$h = 5000 \text{Å}$$

$$r = \frac{150}{2} \text{ Å} = 75 \text{ Å}$$

Volume of virus can be found.

$$V_{virus} = \pi r^2 h = \pi \times \left(75 \times 10^{-8}\right)^2 \times 5000 \times 10^{-8} \ cm^3 = 8.8 \times 10^{-17} \ cm^3$$

$$\text{Mass of 1 mole virus} = \frac{V_{virus}}{\text{Specific Volume}} \times N_A = \frac{8.8 \times 10^{-17}}{0.75} \times N_A = 70.68 \times 10^6 \text{ gm/mole}$$

22.(D) n-factor of $H_3PO_3 = 2$

(In oxyacids H-atom directly attached to oxygen are replaceable)

$$N = M \times n - factor = 0.3 M \times 2 = 0.6 N$$


23.(D) Number of e⁻ weighing 1 kg = $\frac{1}{9.108 \times 10^{-31} \text{kg}} = \frac{1}{9.108} \times 10^{31}$

Number of moles of
$$e^- = \frac{1}{9.108 \times 6.023} \times \frac{10^{31}}{10^{23}} = \frac{1}{9.108 \times 6.023} \times 10^8$$

24.(A) 6.3 gm
$$(COOH)_2 \cdot 2H_2O$$
 in 250 ml dihydrate oxalic acid

$$\frac{6.3}{126}~\text{mole}~(\text{COOH})_2 \cdot 2\text{H}_2\text{O}~\text{in}~0.25\,\ell~(\text{COOH})_2\,2\text{H}_2\text{O}$$
 = 126 gm / moles

Hence molarity of acid is 0.2 M $6.3\text{g} \rightarrow 0.05 \text{ moles}$

n-factor of $(COOH)_2 \cdot 2H_2O$ is 2

$$\therefore$$
 Normality of $(COOH)_2 \cdot 2H_2O = M \times n\text{-factor} = 0.2 \times 2 = 0.4 \text{ N}$

meq of acid consumed = meq of Base consumed

$$0.4 \times 10 \ ml = 0.1 \times V_{ml} \quad \Rightarrow \quad V_{ml} = 40 \ ml$$

24 gm C
$$\frac{24}{12} N_A = 2 N_A$$

56 gm of Fe
$$\frac{56}{56} N_A = N_A$$

27 gm of Al
$$\frac{27}{27} N_A = N_A$$

108 gm of Ag
$$\frac{108}{108} N_A = N_A$$

26.(55.56)

$$\mathrm{d_{H_2O}}=1000~\mathrm{kg}\,/\,\mathrm{m^3}\equiv1.0~\mathrm{gm}\,/\,\mathrm{ml}$$

Hence, 1000 ml water weighs 1000 gm =
$$\frac{1000}{18}$$
 moles = 55.56 moles

Molarity is 55.56 M

27.(C) 120g of urea is present in \rightarrow 1120g of solution

$$\therefore$$
 1120 gm solution has $\frac{120}{60} = 2$ mole urea

$$\frac{1120}{1.15}$$
 ml solution has 2 moles of urea

:. Molarity =
$$\frac{2}{1120} \times 1.15 \times 1000 = 2.05 \text{ M}$$

Molarity =
$$\frac{10xd}{M_0} = \frac{10 \times 29.2 \times 1.25}{36.5} = 10 \text{ M}$$

Since, Number of m moles of HCl is conserved $10M \times V_{ml} = 200 \times \frac{4}{10} \implies V_{ml} = 8m\ell$

29.(8)
$$H_2X(M_w = 80g)$$

Density =
$$\frac{\text{mass}}{\text{volume}}$$

$$3.2 \text{ M} \Rightarrow 3.2 \text{ moles of solute is present in 1000 ml of solution (from 1000 ml of solvent)}$$

3.2 moles of solute is present in 1000 ml of solvent ($1000 \times 0.4 = 400 \,\text{g}$ of solvent) (d= 0.4 gm/ml)

∴ Number of moles of solute present in 1000 gm. Solvent =
$$1000 \times \frac{3.2}{400} = 8$$

30.(9) Let total moles be 1

$$n_{solute} = 0.1$$

$$n_{solvent} = 0.9$$

At 298 K, molality = molarity (say x)

'x' M \Rightarrow x mole solute in 1 L solution;

x mole solute in 1 ℓ solution (2 gm/cc) = 2000 gm solution (d = 2 gm/cc)

'x' molal \Rightarrow and x mole solute in 1000 g solvent

x mole solute in 1000 gm solvent.

2000 gm soln

1000

1000 gm solute 1000 gm solvent

$$\frac{n_{solvent}}{n_{solute}} = \frac{mass_{solvent}}{mass_{solute}} \times \frac{MW_{solute}}{MW_{solvent}} = \frac{0.9}{0.1} = 9$$

Solution | Workbook-1 42 Stoichiometry-I